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Abstract 

This paper presents a forecasting method of the electricity consumption and 
production in a household equipped with photovoltaic panels and a smart energy 

management system. The prediction is performed with a Long Short-Term Memory 

recurrent neural network. The datasets collected during five months in a household 
are used for the evaluations. The recurrent neural network is configured optimally to 

reduce the forecasting errors. The results show that the proposed method 
outperforms an earlier developed Multi-Layer Perceptron, as well as the 

Autoregressive Integrated Moving Average statistical forecasting algorithm. 

Keywords: electricity prediction, Long Short-Term Memory, smart home, energy 
management system, photovoltaics 

  

1. Introduction 

The worldwide energy consumption has seen a substantial growth over the 
past century and ensuring that everyone has access to energy is still a major 
and ongoing challenge. In this work we will focus on the electricity 
consumption and production at household-level, however the modelling of a 
larger area is also of interest, as we can see in [11] and [12]. In order to cope 
with the environmental degradation caused by the usage of fossil fuels, the 
demand of alternative, “renewable energy” sources are undoubtedly 
increasing. Solar energy is the most important source of this kind, mainly 
because of the Sun’s lifespan which is approximately 5 billion years. Therefore, 
taking into consideration human timescale, it is safe to say that this is an 
inexhaustible source of energy. Photovoltaic solar energy, one of the Solar 
energy’s subcategories is captured by photovoltaic panels in the process of 
producing electric energy. The panels are composed of multiple arrays of 
photovoltaic cells, usually made of silicon, which in contact with the light from 
the Sun causes agitation in the electrons of the cells, and therefore, produce 
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electricity. To analyze how efficient this method of producing electricity in a 
household is and whether it is feasible or not, different prediction methods 
have been applied in order to evaluate both the energy production and 
consumption on such a smaller scale. 
 
In the current stage of the research, we analyze the efficiency of a Long Short-
Term Memory (LSTM) recurrent neural network (introduced by Hochreiter and 
Schmidhuber in [10]) in forecasting the electricity consumption and production 
in a smart house. In our use case, the electricity production is assured by two 
photovoltaic panels. We already evaluated some stochastic methods (Markov 
chains, prediction by partial matching) and some statistical algorithms (ARIMA, 
TBATS). Other methods will be further implemented and evaluated. We are 
interested in determining the method with the lowest prediction error, which 
then will be integrated into a smart energy management system whose role is 
to keep a balance between the consumption and production of a certain 
household. 
 
The rest of this paper is organized as follows. Section 2 presents the relevant 
related work. Section 3 describes the proposed LSTM-based modelling of the 
electricity consumption and production in a smart house. Section 4 discusses 
the evaluation results in a comparative view with other existing methods. 
Finally, Section 5 concludes the paper and presents some further work 
possibilities. 

2. Related Work 

In [3], Stefan Feilmeier presented the software architecture of the FENECON 
energy management system. The author recorded the electricity production of 
two photovoltaic panels and the loads on three phases in a household during 
five months, with a step of 5 minutes. The obtained dataset was used later for 
evaluations in different researches (including our current work). In [3], the 
dataset was used to evaluate a Multi-Layer Perceptron (MLP) in predicting the 
electricity consumption and production. The author reported a mean absolute 
error of 211.07 Watts. Other works which are applying neural networks to 
predict the electricity consumption of buildings are [13] and [9]. Sensor-based 
forecasting of the electricity consumption in a large entertainment venue with 
neural networks and support vector regression is investigated in [8]. 
 
In [4], we adapted a Markov model to be able to work with the electricity 
consumption and production levels and to provide a short-term prediction of 
the upcoming levels. To reduce the state-complexity of the model, we 
downscaled the input data by dividing all the values to the same scaling factor. 
The value returned by the model is upscaled to obtain the predicted electricity 
level, by multiplying it with the same scaling factor. The scaling factor, the 
length of the input vector, as well as the order of the Markov Model, were the 
main parameters varied in the experiment. The mean absolute error, measured 
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on the same dataset which is used in our current work, was 34.43 Watts. A 
stride predictor and a hybrid predictor composed of the Markov model and the 
stride predictor have been also evaluated. However, the stride predictor 
proved to be inefficient and, thus, the more complex hybrid predictor could not 
provide better results than its Markov prediction component. 
 
To predict the next values of time series, several machine learning techniques 
can be considered as good candidates, a design pattern for an efficient 
implementation being presented in [6]. The efficiency of the prediction model 
is highly dependent on the type of the input data. Therefore, we evaluated 
different prediction methods with the goal of finding the most appropriate one 
for the electricity consumption and production datasets. In [5], we used 
statistical methods to predict the electricity consumption and production. The 
Autoregressive Integrated Moving Average (ARIMA) algorithm can describe 
time series based on the past values or lags and the forecast errors. The other 
statistical method is based on Trigonometric Seasonal, Box-Cox 
Transformation, ARMA Residuals, Trend and Seasonality components (for short 
TBATS), is decomposing seasonal time series into trend, seasonal and irregular 
components. The evaluations have shown a mean absolute error of 198.27 
Watts for the ARIMA algorithm and 73.62 Watts in the case of the TBATS 
model. 
 
In [14], Monteiro et al. evaluate short-term statistical prediction of photovoltaic 
electricity production. Two models are proposed: one of them is analytical and 
the other one is using a MLP. The prediction relies on weather forecasting 
tools focused on the location of the photovoltaic plant, as well as on hourly 
recorded photovoltaic electricity production. The analytical model computes 
the sky irradiation based on hourly radiation forecasts and adjusts it with 
irradiation attenuation index and photovoltaic production attenuation index. 
The neural network was selected and configured using genetic algorithms and 
is using weather forecasts as input information. The proposed models were 
evaluated and compared on the same data collected from a grid-connected 
photovoltaic plant. The authors concluded that the two models have similar 
results, and both are usable in the sight of selling electricity to the markets. 
 
In [2], Fan et al. evaluated the hybrid prediction through data mining 
techniques of the next-day energy consumption in buildings. The proposed 
method has three steps. In the first step, an outlier identification and removal 
is performed. In the second step, a recursive feature elimination is applied in 
order to use the optimal inputs for the eight different predictors. In the final 
step, an ensemble model is optimized for the predictors through a genetic 
algorithm. The authors concluded that the proposed ensemble model can be 
efficient in fault detection. 
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3. LSTM-Based Forecasting of Electricity 
Consumption and Production 

This section focuses on describing the proposed model of this paper and the 
functionalities that it has. For our paper, we implemented and used an LSTM, 
which is a model of Recurrent Neural Network (RNN). RNNs represent one of 
the most optimal choices when working with data organized in time series 
models. Their work principle is based on combining nonlinear activation 
functions in a recurrent structure, which makes prediction possible and 
provides improved prediction accuracy, as stated in [1]. In contrast to the 
standard Neural Networks, which are usually represented using feedforward 
architectures, RNNs allow the information to be transferred both forward and 
backward, with the help of their feedback connections. Therefore, these neural 
networks benefit from the ability to work with dynamic data. An analysis 
regarding the applicability of RNNs for prediction purposes is presented in [15]. 
 
An RNN can have multiple layers, steps or stages. Their work principle is 
described in Fig. 1. Each stage from the above schema corresponds to a given 
time T. The RNN at the time T+1 will use the RNN from the time T as one of 
its inputs. Each stage will send its output to the next stage. The key 
mechanism which makes the RNN to work well is represented by the hidden 
state information propagated from a certain stage to the next. The hidden 
state works as a memory capable of retaining information of the current stage. 
A layer from the RNN is processing the input data and is returning its internal 
state which is going to be used as an input in the next stage. More specifically, 
each stage is trained to transform the target sequence from a moment T into 
the input sequence but with a T+1 timestep offset. To achieve this, a 
backpropagation algorithm is used. The value of the loss obtained for each 
parameter is used to change the parameter values in the reverse direction with 
the purpose of minimizing the loss. As this movement is time based, each 
timestep contains its own loss value. In the process of modeling the 
dependencies between value sequences, the gradient of the timestep T 
depends on the gradient of the timestep T-1 and so on, and because of this, 
the further we progress with the timesteps, the gradient of the latter timestep 
matters less and less. This is known as the “vanishing gradient problem” 
whose effect is that the network cannot learn from long term dependencies, 
because the gradients of the early stages become smaller. LSTM networks are 
a solution to this problem. 
 
LSTMs are RNNs that work with data that varies through time or sequentially, 
like language, stock market prices, weather recording sensors, etc. The way 
they work is similar to other RNNs, by using the outputs of a layer at a 
timestep T as inputs for the same layer at a timestep T+1. They have a 
component that acts as a memory which helps to transfer information learned 
at the timestep T to the next timesteps, and they can also forget irrelevant 
information from the preceding state and update the current state, allowing  
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Figure 1. RNN 

 
only important parts of the state to reach the output. The networks use 
activation functions to induce nonlinearity to the data. 
 
Among the most used activation functions are the sigmoid and the hyperbolic 
tangent. As in our datasets we had no negative values, we decided to use the 
sigmoid function in our LSTM network, as the interval of this function is [0,1]: 
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As mentioned before, LSTMs are capable of remembering and choosing which 
data is relevant as future inputs. They do this by using three gates that release 
data between hidden state and cell state. These gates are called “forget gate”, 
“input gate” and “output gate”. An LSTM neuron incorporates a cell, an input 
gate, an output gate, as well as a forget gate. The transformation process of 
information passing through a cell is described in [7] as follows. All the gates 
of the cell are collecting activations from the block and from the outside. A 
recurrent connection with the weight 1 keeps the current internal state of a 
cell. The input and output gates scale the input and output of the cell by using 
activation functions. The forget gate decides which information must be 
eliminated from the cell state. That is a sigmoid layer, which provides output 
values between 0 and 1, and scales the internal state, so as the values exiting 
the gate are ranged in the interval mentioned above. 
 
For our experiment, we implemented the LSTM network using Python 3 and 
the TensorFlow framework with the Keras API. As input data, we used the 
datasets provided by the FENECON Energy Management System (FEMS) 
described in [3]. Fig. 2 shows the schema of this system, with “PV1” and “PV2” 
being the producers and “Ph1”, “Ph2” and “Ph3” being the consumers. 
  

Input at time T1 Output at time T1RNN

Input at time T2 Output at time T2RNN

Input at time Tn Output at time TnRNN

Input at time T1 Output at time T1RNN

Input at time T2 Output at time T2RNN

Input at time Tn Output at time TnRNN
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Figure 2. FEMS 

 
The datasets from the system consist in 5 files, two of them containing values 
from the energy produced by “PV1” and “PV2” photovoltaic panels, and the 
other three files ,each having recordings for “Ph1” , “Ph2” and “Ph3” 
consumers. The recording interval for each value is 5 minutes and the period is 
5 months. Each file consists of a 1D array of values. 
 
To determine the accuracy of our LSTM network, we used the Mean Absolute 
Error (MAE) metric: 
 

N

PR

MAE

N

i

ii
=

−

= 1         (2) 

 
where iR  is the real value at time i , iP  is the predicted value (the output 

provided by the LSTM) at time i , whereas N  is the total number of evaluated 

electricity levels. All the values from our datasets are measured in Watts and 
therefore, the MAE values which we are going to report further are also 
represented in Watts. 

4. Experimental Results 

In this section we focus on the results we obtained from our experiment. We 
tuned the LSTMs parameters in an effort to try and find the best configuration 
that would produce the smallest value for the MAE. We started with a standard 
configuration of 5 inputs, two hidden layers each containing 50 neurons, a 
learning rate of 0.01 and 30 epochs. The first parameter that we varied was  
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Figure 3. The influence of the number of neurons from the first hidden layer 

 
the number of neurons in the first hidden layer, going from 5 values to 10, 25, 
50 and 100, leaving the rest of the configuration unchanged. Due to the fact 
that the LSTM provides slightly different results in different runs because of its 
random initialization, ee ran each dataset through the network 5 times for 
each changed parameter, and calculated the average of the MAE values we 
obtained. By increasing the input number, we noticed the MAE value was 
increasing. After a series of experiments towards this direction, we concluded 
with 10 being the optimal value, and thus we obtained the MAE equal to 
102.23 for this configuration. Fig. 3 shows a graph with the values obtained 
following the tests. 
 
Next we varied the number of neurons from the second hidden layer, following 
the same pattern that we used for the previous varied parameter. Starting with 
the base configuration and adding the optimal value 10 for the first hidden 
layer, we experimented with the second layer starting with 5 neurons, then 10, 
25, 50 and 100, and the smallest MAE value we obtained was 101.47, for 5 
neurons on the second hidden layer. We concluded with this value being the 
optimal tune for this parameter. Fig. 4 describes the results obtained by 
experimenting with the above mentioned values through all the datasets. 
 
The next parameter we tuned was the learning rate, starting from a value 0.01 
and slightly increasing it to 0.02 and 0.03. We noticed that by increasing the 
learning rate, the MAE value also increased, to the point where we reached the 
value 107.1 with a 0.03 learning rate value, so we decided to stop increasing 
it. The optimal configuration here is with a value of 0.01, having a MAE of 
101.47, which means that our configuration up until this point was accurate 
with this parameter already having an optimal value. The graph with the 
results can be seen in Fig. 5. 
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Figure 4. The influence of the number of neurons from the second hidden layer 
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Figure 5. The influence of the learning rate 

  
The next parameter we varied for our configuration was the number of inputs. 
Having reached the MAE equal to 101.47 with our current configuration using 
5 inputs, we increased the number to 10, 15, 20 and 25. We noticed that the 
higher the number of the inputs, the higher the value of the MAE became. So 
we also decided to try a smaller number than the starting one and, thus, we 
went with 4 inputs. This proved to be the right decision, as we reached a MAE 
equal to 100.99. The results are visible in the graph from Fig. 6. 
 
The last parameter that we decided to vary was the number of epochs. Our 
base configuration had 30 epochs which achieved the above mentioned MAE, 
so we decided to increase this number. We varied through 50, 100 and 500 
epochs. The results we obtained drove us to the conclusion that 50 epochs 
was the best configuration, having obtained a MAE equal to 100.77.  
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Figure 6. The influence of the input vector size 

 
We also tried to go below our starting value and we decided to run a series of 
tests with 25 epochs, but as we can see in the graph from Fig. 7, the MAE was 
higher than the one we obtained with our optimal configuration. 
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Figure 7. The influence of the number of epochs 

 
After the experiment we concluded that the optimal LSTM configuration has 4 
inputs, a first hidden layer with 10 neurons, a second hidden layer with 5 
neurons, a learning rate of 0.01 and 50 epochs. Next we made a comparison 
of our results with other methods used to calculate the MAE on the same 
datasets.  
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Figure 8. Comparison with other forecasting methods 

 
As the graph in Fig. 8 portraits, with a MAE of 100.77 Watts, our LSTM 
network outperformed a MLP [3], which had a MAE equal to 211.07, and an 
ARIMA model [5], with a MAE equal to 198.27. Our LSTM had poorer 
performance than a TBATS algorithm [5], which had a MAE equal to 73.62, 
and also than a Markov predictor [4] with MAE 34.43. 

5. Conclusions and Further Work 

In this paper, we analyzed the LSTM used as a predictor of the electricity 
consumption and production in a smart house. The goal is to integrate such a 
predictor into a smart energy management system of a household, that might 
keep a balance between the electricity consumption and production avoiding 
demands from the grid. The evaluations performed on the datasets collected 
from a real household have shown that the LSTM’s mean average error is 
100.77 Watts, which is half of the mean average error encountered by the MLP 
and by the ARIMA [5] statistical algorithm, respectively. The LSTM proved to 
be less accurate than the Markov predictor [4] and the TBATS algorithm [5], 
but we can classify it among the best methods.  

Taking into account the constructive and functional differences of the best 
performing methods (the Markov model-based stochastic predictor, the TBATS 
statistical predictor and the LSTM neural predictor), we are interested to 
develop a hybrid prediction mechanism able to exploit all these three 
predictors as components. Another further work direction is to develop and 
evaluate a prediction method relying on fuzzy logic. 

 
 
 

89



International Journal of Advanced Statistics and IT&C for Economics and Life Sciences  
December 2020 * Vol. X, no. 1 

© 2020 Lucian Blaga University of Sibiu 

References 

[1] S. Abdulkarim, Time series prediction with simple recurrent neural networks, Bayero 

Journal of Pure and Applied Sciences, Vol. 9, No. 1, 2016. 

[2] C. Fan, F. Xiao, S. Wang, Development of prediction models for next-day building energy 

consumption and peak power demand using data mining techniques, Applied Energy, Vol. 

127, 2014. 

[3] S. Feilmeier, Loads management based on photovoltaic and energy storage system, M.Sc. 

Thesis, Lucian Blaga University of Sibiu, 2015.  

[4] A. Gellert, A. Florea, U. Fiore, F. Palmieri, P. Zanetti, A study on forecasting electricity 

production and consumption in smart cities and factories, International Journal of 

Information Management, Elsevier, ISSN 0268-4012, Vol. 49, pp. 546-556, December 

2019. 

[5] A. Gellert, U. Fiore, A. Florea, R. Chis, Forecasting Electricity Consumption and Production 

in Smart Homes, Submitted to Pervasive and Mobile Computing, November 2020. 

[6] A. Gellert, A. Florea, Investigating a New Design Pattern for Efficient Implementation of 

Prediction Algorithms, Journal of Digital Information Management, Vol. 11, Issue 5, ISSN 

0972-7272, pp. 366-377, October 2013. 

[7] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks, Studies in 

Computational Intelligence, Springer, ISBN: 978-3-642-24796-5, January 2012 

[8] K. Grolinger, A. L’Heureux, M. Capretz, L. Seewald, Energy Forecasting for Event Venues: 

Big Data and Prediction Accuracy, Energy and Buildings, Vol. 112, pp. 222-233, 2016.  

[9] L. Hernández, C. Baladrón, J. Aguiar, B. Carro, A. Sánchez-Esguevillas, J. Lloret, Artificial 

neural networks for short-term load forecasting in microgrids environment, Energy, Vol. 

75, pp. 252-264, 2014. 

[10] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Computation, Vol. 9, No. 

8, pp. 1735-1780, 1997. 

[11] K. Kavaklioglu, Modeling and prediction of Turkey’s electricity consumption using Support 

Vector Regression, Applied Energy, Vol. 88, Issue 1, pp. 368-375, 2011. 

[12] T. Khatib, A. Mohamed, K. Sopian, M. Mahmoud, Solar Energy Prediction for Malaysia 

Using Artificial Neural Networks, International Journal of Photoenergy, Vol. 2012, 2012. 

[13] H. Khosravani, M.D.M. Castilla, M. Berenguel, A. Ruano, P. Ferreira, A Comparison of 

Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building, 

Energies, Vol. 9, Issue 1, 2016. 

[14] C. Monteiro, L.A. Fernandez-Jimenez, I.J. Ramirez-Rosado, A. Muñoz-Jimenez, Pedro M. 

Lara-Santillan, Short-Term Forecasting Models for Photovoltaic Plants: Analytical versus 

Soft-Computing Techniques, Mathematical Problems in Engineering, Vol. 2013, 2013. 

[15] J. Park, D. Yi, S. Ji, Analysis of Recurrent Neural Network and Predictions, Symmetry, Vol. 

12, No. 4, 2020. 

90




