
DOI: 10.2478/ijasitels-2020-0005

Part of Speech Tagging Using
Hidden Markov Models

Adrian BĂRBULESCU1, Daniel I. MORARIU1
1Computer Science and Electrical and Electronics Engineering
Department, Faculty of Engineering, “Lucian Blaga” University of
Sibiu, Romania
{adrian.barbulescu, daniel.morariu}@ulbsibiu.ro

Abstract

In this paper, we present a wide range of models based on less adaptive and adaptive

approaches for a PoS tagging system. These parameters for the adaptive approach
are based on the n-gram of the Hidden Markov Model, evaluated for bigram and

trigram, and based on three different types of decoding method, in this case forward,
backward, and bidirectional. We used the Brown Corpus for the training and the

testing phase. The bidirectional trigram model almost reaches state of the art

accuracy but is disadvantaged by the decoding speed time while the backward trigram
reaches almost the same results with a way better decoding speed time. By these

results, we can conclude that the decoding procedure it’s way better when it evaluates
the sentence from the last word to the first word and although the backward trigram

model is very good, we still recommend the bidirectional trigram model when we

want good precision on real data.

Keywords: Part of Speech, Hidden Markov Model, rule-based tagger, word

structure analysis

1 Introduction.

Part of speech tagging is an important step in the domain of natural language
processing, nowadays many companies use speech and language processing
algorithms to develop different applications for their clients. Some examples of
those applications used in the real world are: intelligent chatbots, various virtual
assistance technologies such as Alexa or Siri, social network websites, most
well-known search engines such as Google, Bing, DuckDuckGo, many
smartphone mobiles, etc.

In this paper, we present an automated system that analyzes an English text
and tries to correctly identify the parts of speech for each word using machine
learning algorithms. The system uses a benchmark text corpus for the learning
and for the evaluation phase, which is presented in section 2 and continues in
section 3 with the necessary steps to prepare and preprocess the input data for
the learning algorithm. In section 4 we present the theoretical aspects for the
learning algorithms and how it was modified and adapted to work in the current

31

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

context. In section 5, we present methods used to evaluate the model and the
obtained results are presented in section 6. The conclusions and possible
further developments are presented in section 7.

2 The dataset

The used dataset is a collection of texts documents that were created and
annotated specifically to have the possibility to evaluate the quality of the
supervised learning algorithms used for the tagging process. For this paper, we
have used the Brown Corpus, a collection of sentences and phrases written in
English language, collected, and organized by Winthrop Nelson Francis & Henry
Kucera from the language department at Brown University [1]. The corpus
contains over 1 million words in total and exactly 500 documents. The
documents from the corpus are divided in 2 main categories: informative prose
containing 9 subcategories with a total of 374 documents and imaginative prose
containing 6 subcategories with a total of 126 documents.

The dataset was divided using both the 70-30 approach and k-fold cross-
validation approach. In 70-30 approach the documents from each subcategory
were divided randomly: 70% for the training set and the rest (30%) is for the
testing set. In the other approach k-fold cross-validation, divides each category
into several distinct groups called folds and at each turn, a single fold will form
the testing set and the other folds will form the training set.

3 Preprocessing

The dataset must be prepared in order to be used by the learning algorithm,
so a series of actions are being applied and the text from the dataset is
converted into a vector representation (bag-of-word type). This representation
also contains annotated text with the appropriate part of speech (PoS) for each
word. All the words in the dataset and the corresponding PoS are extracted
based on separation rules. For Brown Corpus, space, tab and newline are very
good separation elements.

This dataset contains many type of PoS tags (approx. 100 tags) and the analysis
made by the learning algorithm would take a long time if the algorithm verifies
each candidate tag at every step (the prediction would be slow and the results
may suffer). For this reason, we have grouped all the existing part of speech
tags into 10 basic categories, those being the basic speaking parts in English
language. In table 1 in the first column there are listed the names for the basic
categories and in the second column there are presented 2 or 3 examples of
the original tags that were included in that category.

Before extracting the relevant words (also called tokens) from the dataset, first
we remove the special characters (or stop characters), those are characters like

32

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

round brackets '()', square brackets '[]' and braces '{}' which are not important
for the tagging process. Another process is eliminating tokens that contain only
numbers, if the token contains numbers and letters, we will remove the
numbers and keep the token as a word only if it will pass a certain remaining
letters threshold.

In the preprocessing step in the training phase, we will also keep a list of words
that start with a capital letter (capitalized words) and separately another list in
which all words are converted to lowercase. The words in the test set will go
through the same filter except for the last step, words that start with a capital
letter will not be converted to lowercase.
In the test set, we will also remove repetitions for tokens that have a "End of
sentence" tag, this is done because the algorithm doesn’t evaluate these tags
and repetitions like "?!?!" may issue errors later in the decoding phase.

4 Part of Speech - tagging

We used two approaches for the automatic part of speech tagging process. The
first approach is the less adaptive one, those ones may either use the most
frequent word tag as the model or using a default-tag to return all the tags or
a combination between these two. The second approach is based on the Hidden
Markov Models, these try to predict the PoS based on the transitioning
probability from one hidden state to another state and based on the emission
probability which returns the association probability of a tag with a certain
word.

4.1 Less adaptive approaches

One simple approach to tag a text corpus is by using a default tagger, this one
returns only a specific tag for every word in the text. Usually, the most used
tag for this model is the “noun” tag, which is almost a quarter percent of Brown
Corpus. Another less adaptive approach is using the most frequent class

Base part of speech Brown Corpus tags No. of words Percentage

Noun (NN) nn, nns, nps$, … 273608 23.56 %

Verb (VB) vb, bem, hvd, … 176081 15.16 %

Article/Determiner (AT/DT) at, ap, dt, … 142123 12.24 %

Preposition (PP) in, to 137735 11.86 %

Others (OT) cd, nil, *, … 108766 9.37 %

Adjective (JJ) Jj, jjs, jjt, … 72125 6.21 %

Pronoun (PN) pn, pp$, wps, … 71421 6.15 %

End of sentence (<s>) “.” 61254 5.28 %

Conjunction (CC) cc, cs 60551 5.21 %

Adverb rb, rp, qlp, … 57528 4.95 %

Table 1: Base part of speech and the frequency of occurrence for each one of them

33

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

baseline model. This uses a training set to form a dictionary with tag
frequencies for each word, when choosing the tag for a certain word the model
will search the dictionary for that word and it will pick the tag with the highest
frequency, if the word doesn’t have a dictionary (word not existing in the
training set) then the model will return the “not found” tag. Instead of returning
the “not found” tag, we can combine this model with the default-tagger = noun,
this will return the “noun” tag when an unknown word is found in the test set.
This process of combining models will be able to obtain a decent accuracy for
unknown words and it will also increase the overall accuracy of the most
frequent class baseline model. We called less adaptive approaches (not un-
adaptive approaches) because the parameters for those methods depend on
the training dataset, are not general valid parameters for all contexts (only
“Default tag” can be considered general valid).

4.2 Adaptive approaches

4.2.1 Hidden Markov Model

4.2.1.1 n-Gram model

The Hidden Markov Model (HMM) can link the connection between observable
states (in our case these are the words in the text) and hidden states (these
are part of speech tags). A Hidden Markov Model has 2 important components,
a matrix A that contains the transition probabilities and a matrix B that contains
the emission probabilities [2], [3].
The A matrix contains the probability that a tag will appear after another tag
appeared at the previous step. For example, knowing that the article "The"
appeared on the previous step, it will be more likely that at the current step,
the selected tag will be a noun "The car…". The probabilities are evaluated
based on the test set and are calculated by counting every tag sequence that
appears in the training set.
To be able to form a matrix with the transition probabilities for a "n-gram", the
Markov model uses a training set from which these occurrence frequencies are
extracted. To collect the occurrence frequencies, each sequence in the training
set will be added or incremented in the transition matrix A.
After creating the Hidden Markov Model in the training phase, we only calculate
the probabilities for unigram (1-gram), bigram (2-gram) and trigram (3-gram)
[4] from the testing set using the following formulas.
Unigram:

 𝑃(𝑡𝑖) =
𝑐(𝑡𝑖)

𝑁
 (1)

where 𝑐(𝑡𝑖) represents the occurrence frequency for the tag 𝑡𝑖 in the training

set and N is the total numbers of tokens in the training set.
Bigram:

 𝑃(𝑡𝑖|𝑡𝑖−1) =
𝑐(𝑡𝑖−1,𝑡𝑖)

𝑐(𝑡𝑖−1)
 (2)

34

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

where 𝑐(𝑡𝑖−1, 𝑡𝑖) represents the occurrence frequency for the tag 𝑡𝑖−1 followed

by the tag 𝑡𝑖 in the training set and 𝑐(𝑡𝑖−1) represents the occurrence frequency

for the previous tag in the training set.
Trigram:

 𝑃(𝑡𝑖|𝑡𝑖−1, 𝑡𝑖−2) =
𝑐(𝑡𝑖−2,𝑡𝑖−1,𝑡𝑖)

𝑐(𝑡𝑖−2,𝑡𝑖−1)
 (3)

where 𝑐(𝑡𝑖−2, 𝑡𝑖−1, 𝑡𝑖) represents the occurrence frequency for the tag 𝑡𝑖−2

followed by the tag 𝑡𝑖−1 which is also followed by the tag 𝑡𝑖 in the training set.

c(ti−2, ti−1) represents the previous bigram frequency.

The B matrix, with the emission probabilities, represents the probability that a
certain tag is associated with a certain word in the training set. The formula,
used by the system, to describe the maximum probability estimate is as follows:

 𝑃(𝑤𝑖|𝑡𝑖) =
𝑐(𝑡𝑖,𝑤𝑖)

𝑐(𝑡𝑖)
 (4)

where 𝑐(𝑡𝑖, 𝑤𝑖) represents the occurrence frequency for the tag 𝑡𝑖 associated

with the word 𝑤𝑖 in the training set and 𝑐(𝑡𝑖) represents the occurrence

frequency for the tag 𝑡𝑖 in the training set.

4.2.1.2 Smoothing techniques

These techniques are used when certain sequences of probabilities are missing
from the A matrix and the higher the rank of the selected n-gram is, the chance
that some sequences of probabilities may be missing, is higher. Various data
smoothing techniques are used in the literature to solve this problem, so that
when a n-gram sequence is not found, its value is estimated by a smoothing
function. In this article we used 2 estimated methods for the missing
probabilities sequences.

One method of estimation is via linear interpolation [5]. This method involves
calculating a new probability composed of the sum of the transition probabilities
(unigram, bigram, trigram) multiplied by a predetermined weight:
 𝑃𝐿𝐼(𝑡3|𝑡1, 𝑡2) = 𝜆1𝑃(𝑡3) + 𝜆2𝑃(𝑡3|𝑡2) + 𝜆3𝑃(𝑡3|𝑡1, 𝑡2) (5)

The values of the coefficients 𝜆1, 𝜆2, 𝜆3 are estimated by the linear interpolation

function [2], [5] and the probabilities are computed using formulas (2), (3) and
(4).
Another estimation method used is the additive smoothing (α-estimate) [6].
This involves adding some constant values to the numerator and denominator
in the probability function (usually correlated with the length of the dataset).

 𝜃𝑖 =
𝑥𝑖+ 𝛼

𝑁+ 𝛼𝑑
 (6)

Where
𝑥𝑖

𝑁
 represents the non-smoothed probability, 𝛼 is the smoothing constant

and 𝑑 is the size of the data (𝑖 = 1, 𝑑̅̅ ̅̅̅). For 𝛼 = 0, then the above formula (6)

does not use any smoothing and for 𝛼 = 1, then the new formula will be called

Laplace’s Rule of Succession or Laplace’s smoothing technique.

35

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

4.2.1.3 Unknown words model

The Hidden Markov Model for unigram, bigram and trigram, that uses only this
model on the tagging system, can get a decent accuracy but it can not reach a
very good accuracy. These occur because there are many words that are not
in the training set and the system presented so far does not predict these words
at all. If the tagging system would be used as an application working with real
data where the number of existing words is much higher than the words
learned, the performance would decrease considerably. Because of this, we
also expanded our system to be able to predict these unknown words (words
that are not in the training set). There are several ways to tag unfamiliar words
such as: using a rule-based system, unsupervised learning algorithms, word
structure analysis algorithms, etc.

In this paper we have developed a system that uses two methods to tag
unknown words. One is based on the analysis of the word structure and the
other one uses manually added rules that were created based an analysis of
the training dataset. The final function will combine these 2 methods and it will
return a probability of associating the unknown word with a specific tag.
The method that is based on the analysis of the word structure tries to identify
suffixes / prefixes that can appear in the specified word. In order to be able to
choose the best suffixes & prefixes, those were not deduced and estimated
from the training set (high computational time and mediocre results), but were
chosen as the most representative, using a list of suffixes & prefixes provided
by [7]. Following this analysis, the list of prefixes and suffixes chosen for this
system are:

List of prefixes: "inter", "intra", "mis", "mid", "mini", "dis", "di", "re", "anti",
"in", "en", "em", "auto", "il", "im", "ir", "ig", "non", "ob", "op", "octo", "oc", "pre",

"pro", "under", "epi", "off", "on", "circum", "multi", "bio", "bi", "mono", "demo",

"de", "super", "supra", "cyber", "fore", "for", "para", "extra", "extro", "ex", "hyper",

"hypo", "hy", "sub","com", "counter", "con", "co", "semi", "vice", "poly", "trans",

"out", "step", "ben", "with", "an", "el", "ep", "geo", "iso", "meta", "ab", "ad", "ac",

"as", "ante", "pan", "ped", "peri", "socio", "sur", "syn", "sy", "tri", "uni", "un",

"eu", "ecto", "mal", "macro", "micro", "sus", "ultra", "omni", "prim", "sept", "se",

"nano", "tera", "giga", "kilo", "cent", "penta", "tech".

List of suffixes: "able", "ible", "ble", "ade", "cian", "ance", "ite", "genic", "phile",
"ian", "ery", "ory", "ary", "ate", "man", "an", "ency", "eon", "ex", "ix","acy",

"escent", "tial", "cial", "al", "ee", "en","ence", "ancy", "eer", "ier", "er", "or",

"ar", "ium", "ous", "est", "ment", "ese", "ness", "ess", "ship", "ed", "ant", "ow",

"land", "ure", "ity", "esis", "osis", "et", "ette", "ful", "ify", "ine", "sion",

"fication", "tion", "ion", "ish", "ism", "ist", "ty", "ly", "em", "fic", "olve",

"ope","ent", "ise", "ling", "ing", "ive", "ic", "ways", "in", "ology", "hood", "logy",

"ice", "oid", "id", "ide", "age", "worthy", "ae", "es".

In order for the model to be able to use these affixes, it is first necessary to
identify with which tags the words that have these affixes are associated in the
training set and to calculate the probability of association with the tag
encountered. If the affix is not found in the training set, then the additive
smoothing will take place. To calculate this, we use the following formula:

36

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

 𝑃𝑠𝑝(𝑥𝑖|𝑡𝑖) =
𝑐(𝑡𝑖,𝑥𝑖)+ 𝛼

∑ 𝑘
𝑇𝑛

𝑥𝑖

𝑘=1
+ 𝛼𝑑

 (7)

where 𝑐(𝑡𝑖, 𝑥𝑖) represents the occurrence frequency for the tag 𝑡𝑖 associated

with the prefix/suffix 𝑥𝑖, ∑ 𝑘
𝑇𝑛

𝑥𝑖

𝑘=1 represents the sum of the tags frequencies

associated with the prefix/suffix 𝑥𝑖.

The second component of the tag identification function for unknown words is
the manually based rule component. The following rules were used in this
article: "words that start with a capital letter" are more likely to be nouns,
"words that contain an apostrophe and end with the s character" are very likely
to be nouns, "words that contain hyphen ('-') or slash (‘/’)" have a higher
probability to be compound words of type OT (others) or JJ (adjective), "words
that contain an apostrophe and end with the t character" are very likely to be
verbs and "words that contain an apostrophe and end with the ‘ve’ or ‘ll’
characters sequence" are very likely to be pronouns.
In order to be able to combine these 2 methods presented above, the
probability of the unknown word with the current tag is calculated according to
the suffixes and prefixes associated with it (note 𝑃𝑠𝑝) and the rule-based

probability is calculated according to the passed conditions for the weights of
rules (note 𝑃𝑟). These are combined in the following final probability:

 𝑃(𝑤𝑘|𝑡𝑖) = 𝑃𝑠𝑝(𝑥𝑖|𝑡𝑖) + 𝑃𝑟(𝑤𝑘|𝑡𝑖) (8)

Following this addition, the result may exceed the probability interval (0,1]. For
this, a threshold function will be executed that will round the value to 1.0.
Exceeding the limit only suggests that there is a probability of 100% (maximum
confidence) that the current tag being tested is also the correct one, usually
this value is obtained for the noun tag which in most cases is also the correct
tag.

4.2.2 Decoder

In the previous section we presented how models are created for known words
(emission and transition probabilities) and for unknown words (rule-based and
word structure analysis). Next, we present the decoder part of the system,
without it the tagger cannot determine the hidden variables sequence (the tag
sequence) associated with the observations sequence (the words of a sentence)
[2].
The algorithm used to decode an HMM, based on the dynamic programming,
is the Viterbi algorithm [2]. The Viterbi algorithm can process the states of the
trellis from left to right or opposite. The general formula to calculate any node
at each step in the trellis is as follows (at time step t, where t ≠ 0):
 𝑣𝑡(𝑗) = 𝑚𝑎𝑥𝑖=1

𝑁 𝑣𝑡−1(𝑖)𝑃𝐿𝐼(𝑡3|𝑡1, 𝑡2)𝑃(𝑤𝑖|𝑡𝑖) (9)

where 𝑣𝑡(𝑗) represents the current Viterbi node processed for tag 𝑗 and 𝑣𝑡−1

represents the Viterbi node processed at previous time step.
To achieve better performances for the HMM, we came up with three decoding
methods and their results are presented in this article. We will call these
methods forward (goes from the first word of the sentence to the end of the
sentence, then a backtrack is made to return the final tags), backward (goes

37

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

from the end of the sentence to the beginning of it, then the backtrack is made)
and bidirectional (will execute both forward and backward method and then
will backtrack either by the forward or backward methods, depending on the
maximum value of the final node).

5 Model evaluation

The dataset used for this paper is a pre-labeled corpus, in this case the test set
is also pre-labeled with the correct tags. These tags are not used in the
prediction process, they are only used to evaluate the performance of the
learning algorithms (evaluating models phase). To evaluate the model, we used
2 approaches, the first approach calculates a simple prediction accuracy, and
the second approach calculates the metrics based on the confusion matrix. The
first assessment involves calculating the percentage of correctly predicted tags
(by comparing the predictive tag with the actual one from the test set) from
the total number of predicted tags. We further note this evaluation metric as
"Accuracy_1". For this approach, we could also calculate the accuracy for the
known words and separately for the unknown words to get a better
understanding of each individual model.
The second approach involves calculating the confusion matrix for the entire
testing set and extracting the evaluation parameters from that matrix as:
Accuracy_2, Precision, Recall, Specificity and F1-score [8].

6 Obtained results

Table 2 presents the results obtained by the bidirectional trigram model for
each part of speech separately as well as an average for each evaluated metric
(TOTAL line). We chose this model because it obtained the best results and
integrated both forward and backward methods. Those results were obtained
using the 70-30 approach to split the dataset and the confusion matrix was
computed for each tag in the testing phase.

TAG ACCURACY_2 PRECISION RECALL SPECIFICITY F1-SCORE

NN 97.86% 95.70% 95.75% 98.57% 95.72%

OT 99.85% 99.19% 99.19% 99.92% 99.19%

CC 99.37% 91.88% 97.50% 99.48% 94.61%

JJ 98.83% 89.72% 93.16% 99.23% 91.41%

PP 99.41% 97.74% 97.59% 99.67% 97.67%

AT/DT 99.37% 98.19% 96.94% 99.73% 97.56%

VB 98.64% 96.67% 94.77% 99.38% 95.71%

PN 99.85% 98.96% 98.72% 99.93% 98.84%

RB 98.87% 90.19% 88.47% 99.46% 89.32%

TOTAL 99.12% 95.36% 95.79% 99.49% 95.56%

Table 2: Results obtained by the bidirectional trigram model

38

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

The most difficult tags to predict, which have the lowest score, were the adverb
and the adjective. These 2 tags are the most context dependent tags and the
context dependent tags do not have a high probability for only a tag and are,
therefore, very difficult to predict in some contexts. The predicted tag with the
best score is the Others tag, this tag contains interjections, numbers (cardinal
numbers), compound words, etc. which most of the time have a unique
morphological form and are not context dependent (for example, the word
"one" will always have the cardinal number tag). These very good results can
be explained by the fact that the training set and the test set are from the same
dataset and have the same distribution. Even if there are other documents used
for testing than those used for training, they come from the same sources
(same authors) that tend to use the same words in the same contexts and
automatically with the same part of speech.

For the forward bigram model, the average training time of the model is
approximatively 1,41 minutes and the average decoding time for all sequences
is 1,44 minutes. For the bidirectional trigram model, the average training time
of the model is 1,38 minutes (similar to the average training time for the
forward bigram) and the average decoding time for all sequences is 3,56
minutes (twice as long as the forward bigram model). The training time
between these models does not differ too much because the training function
uses parallel threads to use the most of the processor's capabilities. The
decoding time is much longer for the bidirectional trigram model because it has
to calculate the trigram transition probability (also the transition probabilities
for bigram and unigram) and evaluate the model both forward and backward,
after which it needs to decode the best sequence for each sentence. Processing
times were estimated on a desktop system with Windows 10, a Quad-Core
processor with a frequency of 3.60 GHz and 16 GB Ram.

Model parameters
options

Unknown words
percentage from

test dataset
(%)

Unknown
words

accuracy
(%)

Known
words

accuracy
(%)

Accuracy_1
(%)

Default-tag: Noun - - - 24.96

Most frequent class
baseline

13.76 0.00 95.85 82.66

Most frequent class
baseline + Default-
tag: Noun

13.76 52.35 95.85 89.87

Forward bigram 3.84 77.37 96.45 95.72

Backward bigram 3.83 82.20 96.51 95.96

Bidirectional bigram 3.83 82.23 96.50 95.95

Forward trigram 3.84 78.28 96.60 95.90

Backward trigram 3.80 81.46 96.63 96.05

Bidirectional
trigram

3.83 81.54 96.63 96.05

Table 3: Comparatively results obtained by all approaches (adaptive and less-adaptive)

39

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

In table 3 we compare the results between the less-adaptive approach and the
adaptive approach. The results are presented in terms of simple accuracy
(Accuracy_1) for the known and unknown words but also for all the words all
together. The known words are words in the test set that also appear in the
training set and the unknown words are words that do not appear in the training
set. The accuracy on unknown words verifies the tagging system performance
that must adapt to unknown situations when it encounters new cases. Those
results were obtained using the k-fold cross validation approach to split the
dataset (in this case k = 4).

For less adaptive models (specifically most frequent class baseline model from
table 3), we do not keep a separated list for the words that start with a capital
letter. The default-tagger doesn’t have any concept of known words or
unknown words because it only predicts one tag, the most frequent class
baseline and this model compound together with the default-tagger keep a list
of unmodified words without converting the capitalized words to lowercase in
the testing set. Without this conversion and without keeping a separated list
with capitalized words only, the percent of unknown words for less adaptive
models is way higher than the percent of unknown words for the adaptive
models. As we can see, less adaptive approach can get good results (only on
familiar words) but on a completely new dataset, the performance could
decrease quite a bit.

From these experiments we noticed that a backward trigram model is almost
as good as the bidirectional trigram. Analyzing in more detail, we noticed that
in the case of bidirectional trigram, in 85.52% of cases the backward branch is
chosen when using the bidirectional method. Figure 1 shows the percentage in
which a bidirectional trigram model chooses the backward method as the
optimal back trace path, being compared to the forward method. In 0.03% of
cases, both models return the same result because the final nodes (final states)
for these two methods have the same value.
Another interesting observation is that the bidirectional bigram model has the
best accuracy for unknown words (82.23%) but does not have as good an
accuracy as the bidirectional trigram for known words (96.63%). The forward
bigram has a poor performance (comparing it with the others that use a Markov
model) and the forward trigram has a better performance compared to the
forward bigram. The problem of tagging of PoS is complicated because
analyzing the dataset, 67% of tokens are ambiguous [2] (have more than one
possible part of speech in different contexts), if we use a less adaptive approach
like the most frequent class baseline + default tag: noun, we can almost
achieve a 89.87% accuracy of correctly predicted tags. In the preprocessing
section we showed that the noun tag represents approximately 23.56% of the
dataset, eliminating the end of sentence tag and using only the first model with
the default-tag = noun, an accuracy of ~ 25% need to be obtained, which
implies that almost a quarter of the test set was "predicted" correctly. Because
of the large dataset, the difference between these models’ results are small,
same applies for the results presented in table 2. The problem becomes

40

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

complicated when the testing set have a different distribution than the training
set (for example sentences from real world). In table 3, in the first column
"Unknown words percentage from test dataset" the percent differs (is between
3.80% to 3.84%) because we use k-fold cross-validation for each test and the
documents were randomly grouped in each fold.

7 Conclusions

The purpose of this paper is to analyze the performance of the Hidden Markov
Model in the PoS tagging system. For this we implemented and tested 2
different models of HMM (bigram and trigram) and 3 different methods to
compute the maximum probability values for a sentence (forward, backward
and bidirectional). The trigram model obtains better results combined with the
bidirectional or the backward method. In the bidirectional method, in almost all
cases (85.51%) the best choice was the backward method. Also, we compare
the obtained results by the HMM approaches with less-adaptive approaches as
“predicting the same tag all the time” or predicting the “most frequent class
baseline” to see the improvement from the accuracy standpoint, if we add the
learning process in the PoS tagging process. The increase was from 89.87%
(when we use a combination between all less-adaptive approaches) to 96.05%
(when we use the learning approach).

In conclusion, the automatic speech part tagging system presented in this
paper uses well-established algorithms in the field of machine learning and
natural language processing to achieve state of the art performances. These
performances were achieved on a test set extracted from the same dataset that
the training set also uses.

The system presented in this paper was also tested with sentences entered
manually by the user and the response was evaluated only by the user. Until

Figure 1:Percentage for each final node value chosen by the bidirectional

method

41

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

© 2020 Lucian Blaga University of Sibiu

now the system works only for the English language and it can be extended
easily to other languages.

References

[1] W. Nelson Francis and Henry Kučera at Department of Linguistics, Brown University
Standard Corpus of Present-Day American English (Brown Corpus), Brown University

Providence, Rhode Island, USA, korpus.uib.no/icame/manuals/BROWN/INDEX.HTM

[2] Dan Jurafsky, James H. Martin, Speech and Language Processing, third edition online
version, 2019

[3] Lawrence R. Rabiner, A tutorial on HMM and selected applications in Speech
Recognition, Proceedings of the IEEE, vol 77, no. 2, 1989

[4] Adam Meyers, Computational Linguistics, New York University, 2012
[5] Thorsten Brants, TnT - A statistical Part-of-speech Tagger (2000), Proceedings of the

Sixth Applied Natural Language Processing Conference ANLP-2000, 2000

[6] C.D. Manning, P. Raghavan and M. Schütze, Introduction to Information Retrieval,
Cambridge University Press, 2008

[7] Lois L. Earl, Part-of-Speech Implications of Affixes, Mechanical Translation and
Computational Linguistics, vol. 9, no. 2, June, 1966

[8] Daniel Morariu, Radu Crețulescu, Text mining - document classification and clustering

techniques, Published by Editura Albastra, 2012

42

http://korpus.uib.no/icame/manuals/BROWN/INDEX.HTM

