
SUGGEST RECOMMENDATION FOR
LIBRARY USERS USING GRAPHS

Gheorghe-Cătălin Crișan1,
1 PhD. student, University „Lucian Blaga” of Sibiu, Faculty of Science,
Romania

Abstract

The aim of this paper is to prove the usefulness of graphs in solving an ever-present problem
for library users: finding books they like and they are looking for. Graphs are known as an

important tool in solving conditioned optimization problems. We propose a graph-based
system of recommendation which can be easy used in a library for assisting and helping users

in finding in real time the books they like. The main advantage of the proposed graph-based

approach lies in the ease with which new data or even new entities from different sources are
added to the graph without disturbing the entire system. The system uses the similarity scores

in order to find the similarity between objects and to get the best recommendation for a user's
request. In the end, we will compare the results from used formulas..

Keywords: graph, optimization, similarity, library

1 Introduction

Graphs are everywhere. They are known as an important tool in solving
conditioned optimization problems For example, Google Maps use graphs to
find the best routes for cars, buses, and walks. Thus, we need to find a
different approach for each type of route based on some requirements. Car
drivers have to respect some traffic rules like speed limit, one-way streets,
crowd and so on. All of these influence the time of arrival to destination. For
buses, we have to know the routes of these, when the buses come in a
specific station, even the time spent by the user during the route. This is
useful when the user has to change two buses to reach the destination and we
want the user to spend as little time as possible. Also for the walks, we have
to know about restricted walk area or even the weather, so the user can
bypass a rainy area.

Search engines use graphs to rank web pages. This feature allows us to get
only relevant pages based on searched keywords. So, if a user searches for
pet stores we want to show only pages for pet stores near the user location
for example.

Another good example is social media networks. We have a graph which looks
like a network where the users are connected based on some rules. If a user is
friend with other user the graph will create an edge between them to make a

43

correlation. This is useful when we want to recommend new friends or
possibly known peoples.

Nowadays, a large part of the commerce takes place in the online
environment, which is why we want to find the most effective ways to increase
sales. A very important factor is providing personalized recommendations to
every user at the right time or even in real time. This ensures that the
suggested products have a high level of interest for the consumer, so he is
willing to purchase the product, and the business can achieve an increase in
the percentage of sales of the products.

Product recommendation is not just a sales strategy, it's also an action that
helps improve the user experience in the online environment. Thus, a pleasant
experience can increase the number of conversions and sales and increase the
potential ROI of marketing efforts to minimize the effort the user is making.
For example, 35% of Amazon’s revenue is generated by its recommendation
engine [1].

The use of graphs for recommendations presents a number of advantages
such as the ability to suggest real-time recommendations based on the latest
user actions, ease of setting parameters to be taken into account when
suggesting a recommendation, the ability to add data in graph from different
sources (relational or nonrelated database, csv files, etc.) without
compromising the already existing graph, but also the ease of integration with
the existing application systems.

After this, we will go through formulas used for our experiment and we’ll make
a comparison between them.

The rest of the article is organized as follows: the second section presents the
problem definition and why such a problem exists. The third section presents
the proposed solution and what are the main benefits. In the fourth section we
take a look at theoretical aspects of graphs and how we use the graphs to
map the data and user data sets. The fifth section contains information about
the tool used to map data and view them using Cypher and details about the
results obtained using different mathematical approaches. And in the last
section the conclusions and further research directions.

2 Problem definition

The main problems with libraries are that there is not so much interaction and
also the reader only reads books recommended by friends.

Many libraries do not interact enough with readers which purchase books to
know their preferences. Thus, the library is just a place where you come if the
reader needs a book which he already knows the title. Only a small part of the
readers are willing to read from other genres because there is a big chance
they will do not like it. They will not risk with these books because they don’t
want to spend time for something that they will not enjoy. So, the readers

44

need somebody to know what they like to read and what they would like to
read.

The second fact is that most of the readers tend to read books that are
recommended by friends or written by the same author whose books they
have read before and liked. This is because they know their friends
preferences, they talk together about the books they read. Based on that, they
will like to receive suggestions from them.

3 Proposed solution

The solution proposed in this article is a graph-based system of
recommendation which can be easily used in a library for assisting and helping
users in finding in real time the books they like.

The main advantages of this solution are:

 increased user experience because they receive good recommendation

 easy way to add new data to graph system from different sources like
dumped database, .csv file or any other file with data

 easy to implement as an external micro service for recommendation

4 Theoretical Aspects

4.1 Applying Graph Theory

The graph is a mathematical structure with countless applications in real life.
Based on Jonathan L. Gross et al. (2004) we will describe the main ideas of
graph theory. Using the graph we can create relationships between different
objects using the following elements of the graph:

 nodes: representing the objects that make up the data set
 edges: representing the relationship between two objects that have a

certain connection

The nodes or entities we are going to use can be of several types. Thus, for
example, we will have user nodes and book nodes, all interconnected
according to the established relationships. In this way, if an X person buys a Y
card, then an edge is created from node X to node Y.

In our case, the edges are to be unidirectional so that if node A has a relation
(edge) with node B it does not mean that node B has a relation with node A. If
we want to do this we use two edges, one from node A at node B and one
from node B to node A, as can be seen in Fig. 1.

Another essential aspect is that each of the nodes represents an object that
has a set of properties specific to each object type. Thus, a book object can
have properties such as title, author, genreand publishing house. These sets of
properties also apply to edges between nodes. So, each edge represents a

45

specific type of relationship that has a set of properties. For example, a
"BOUGHT" type edge may have properties such as the acquisition date or
rating offered for that product.

Fig. 1 – Example of graph with 3 types of nodes and 3 types of edges [2]

Thus, for the recommendation of books to the users of a library we have to
have the following structure:

- the graph nodes:
o book (with properties):

 title
 authorId
 genreId

o author
 name

o genre
 name

o user
 name
 years
 gender
 job

- the edges of the graph with various actions:

o wrote
o in_genre
o bought

 rating

46

4.2 Types of Recommendations and Formulas

Suggestion recommendations can be of two types: content-based or
collaborative filtering [3]. Content-based filtering also has features comparing
objects properties and making a score based on them, where each feature can
have a weight more or less important than another feature. Using this
approach, the object with the highest score will be recommended, considering
the user's preferences remain constant. The problem with this approach is the
fact that suggestions are suggested only from the categories that the user has
bought without recommendations for products in other categories, so that the
user may be interested in them but have not seen them before.

On the other hand, collaborative filtering is based on how other users
responded to the same object as compared to the current user. This
determines whether our client might like a particular product (Guy, N. N.,
2017). This is done by filtering users who have interacted with the same
objects and finding similar objects that have been purchased by other users
with similar preferences by doing a filter after the best score of objects.

The following formulas are also described in Junmei Feng et al. (2018) article
presenting different algorithms for finding similarity. Using the Jaccard index
we can measure the level of similarity between two objects resulting in a score
with the value in the range [0, 1]. This means that two identical objects have
the score 1 and two different objects altogether have a score of 0. The Jaccard
index counts the common properties of two objects, that is, the intersection of
the two sets of properties, then divides them into the total number of unique
object properties, that is, the meeting of the two sets of properties. This can
be applied for content-based recommendations.

 (1)

Another function is the cosine distance with which we can compare the level of
similarity between two objects resulting in a score that has a value in the
range [-1, 1]. It transforms the values of the relations of the two objects into
two vectors, and then calculates the distance representing the difference
between the two objects. Thus for a 0° difference we have cos(0°)=1 meaning
that the two objects are perfectly similar and cos(180°)= -1 meaning the two
objects are totally opposite. It can be applied for collaborative filtering
recommendations.

 (2)

Pearson correlation is another feature used for collaborative filtering that takes
into account the fact that for each object the value of relationships can differ,
for example, two people can give a different rating for a book because one
person is more demanding. Therefore, Perason correlation takes into account

47

the average of values, so some objects tend to have higher values of
relationships than other objects.

 (3)

5 Experimental setup

We have 3 main steps used in our project implementation to create the
recommendation system. The first step is to create the dataset. Because we
can’t find an existing dataset for a library with users, borrowed books, ratings
and so on we create a dataset with imaginary data. We put all these data in
separated .csv file (one file for each entity – like books, author, reader, order).

The second step is to import created data into a graph database. There is
plenty of graph database alternative: Neo4j, Titan, Cassandra, OrientDB, etc.
before.

The third step is to choose a query-programming language. This depends on
what graph database you choose: Cypher Query Language for Neo4j, Gremling
for Titan, Cassandra Query Language for Cassandra. So, for our project, we
will use Cypher and we have a syntax like the one presented below:

(user: User {name: “Alex”}) -> [b:BORROW] -> (book:Book)

Fig. 2 – Listing example for Cypher query matching all books borrow by user Alex

Cypher Query Language is a declarative graph query language that allows for
expressive and efficient querying and updating of a property graph [4]. The
Cypher type system is simple to use and use a specific syntax for declaring
nodes, relationships, paths, maps, lists, integers, floating-point numbers,
booleans, and strings:

- CREATE / DELETE: Used to create / delete nodes and relationships.
- SET / REMOVE: Used to set / remove values to properties on nodes

and relationships.
- MERGE: Used to match existing or create new nodes.
- MATCH: Used to get data from the graph
- WHERE: Used to add for filter results
- WITH: Used to passing results or to give aliases to results
- RETURN: Used to get results

Data sets are to be loaded from .csv files as you can see in the example below
in Fig.3.

48

LOAD CSV WITH HEADERS

FROM 'file:///books.csv'

AS line

MERGE (book:Book { id: line.id,

 title: line.title,

 authorId: line. authorId,

 genreId: line. genreId

})

Fig. 3 – Loading book data set

6 Experiments and results

Based on data imported using the technique exemplified above we will create
a graph like the next one. Here we can see authors and the books
borrowed/bought by Maria Anders and Thomas Hardy represented as nodes:

Fig. 4 – View graph relationships between two users

In the following section, we will describe formulas used for recommendations
and what are the advantages and disadvantages of each one.

6.1 Jaccard Index

In the following, the recommended recommendations for the book "Nature of
Statistical Learning Theory" using the Jaccard Index will be analyzed. The
algorithm can be configured to take account of one or more features of
objects. Thus, as can be seen in Fig. 5 the algorithm searches for similar

49

books that are the same or that are written by the same author. So, the higher
the number of features in common, the better the score. However, this type of
content-based recommendation is not very effective because it does not take
into account which books other users are interested in, but just try to find
cards with identical features.

The results obtained in Fig. 6 shows that the "Setting of the Learning Problem"
book has the best score. This is due to the fact that the two books have the
same author and the same genre, while the following recommendations have
the same genre but different authors.

MATCH (b: Book {title: "Nature of Statistical Learning Theory"})-

[:IN_GENRE|:WROTE]-(g)<-[:IN_GENRE|:WROTE]-(other:Book)

WITH b, other, COUNT(g) AS intersection

MATCH (b)-[:IN_GENRE|:WROTE]-(bg)

WITH other, intersection, COLLECT(bg.name) as set1

MATCH (other)-[:IN_GENRE|:WROTE]-(og)

WITH other, intersection, set1, COLLECT(og.name) as set2

WITH other, intersection, set1, set2

WITH other, intersection,set1+filter(x IN set2 WHERE NOT x IN set1)

AS union

RETURN other.title AS recommendation,

((1.0*intersection)/SIZE(union)) AS score ORDER BY score DESC LIMIT

5

Fig. 5 – Using of the Jaccard Index algorithm

Fig. 6 – The recommendations obtained by applying the Jaccard Index algorithm

The advantage is that this approach is good when we want to match as many
book properties as we can. So, we are looking for common properties like
author, the genre of the book, etc.

The disadvantage is that there is no possibility to suggest books from other
genres or even other authors. All these because the compared books will have
a low score of similarity, so the recommendation will fail.

6.2 Cosine Distance

In Fig. 7 you can see the Cosine Distance algorithm listing on our data set.
The algorithm suggests recommendations for the "Maria Anders" user looking

50

for other users who bought books that Maria bought. Thus, the algorithm
performs collaborative filtering taking into account the preferences of other
similar users. This is deduced from the user rating on shared cards. In this
way, a classification of users who gave similar recharges for the books that the
two users bought.

So, "Maria Anders" bought the book "Nature of Statistical Learning Theory"
(rating 5) and the book "The Signal and the Noise" (rating 3). From the results
obtained in Fig. 8 we can see that the algorithm suggests Mary as the first
recommendation the book "Complete Sherlock Holmes - Vol I" bought by
"Christina Berglund" (rating 5) who also bought the book "Nature of Statistical
Learning Theory" (rating 3). This pattern shows that the two people have a
book in common, and because the rating values given for the other books are
similar, the algorithm finds this match.

 MATCH (u1:User {name: "Maria Anders"})-[x:BOUGHT]->(b:Book)<-

[y:BOUGHT]-(u2:User)

WITH SUM(x.rating * y.rating) AS ab_sum,

 SQRT(REDUCE(ai = 0.0, a IN COLLECT(x.rating) | ai + a^2)) AS

a_sqrt,

 SQRT(REDUCE(bi = 0.0, b IN COLLECT(y.rating) | bi + b^2)) AS

b_sqrt,

 u1, u2

WITH u1, u2, ab_sum / (a_sqrt * b_sqrt) AS cos_distance

ORDER BY cos_distance DESC LIMIT 10

MATCH (u2)-[r:BOUGHT]->(m:Book) WHERE NOT EXISTS ((u1)-[:BOUGHT]-

>(m))

RETURN m.title AS recommendation, SUM(cos_distance * r.rating) AS

score

ORDER BY score DESC LIMIT 5

Fig. 7 - Using of the Cosine Distance algorithm

Fig. 8 – The recommendations obtained by applying the Cosine Distance algorithm

The advantage is that this approach is to match users with similar properties
such as books borrowed by both having the same rating or users have the
same age and so on. So, now we can find a book written by other authors and
even from other genres because a similar user read that book and now we can
recommend to our reader.

The disadvantage is that this is not so accurate when we have some readers
who like a niche book genre and we do not have other readers with similar
preferences. Thus, for our niche user, we can’t find other users with the same

51

preferences and we have to use the Jaccard Index instead to find similar
books.

6.3 Pearson Correlation

The following implementation shown in Fig. 9 of Pearson Correlation comes as
an optimization of the Cosine Distance algorithm. This is because the
algorithm takes into account an average of the user's ratings, so the algorithm
takes into account the overall direction in which the rating values tend. So the
algorithm solves the recommendation problem by finding similar books that
two people buy, even if a person is more exigent on the rating.

This is shown in Fig. 10 where "Maria Anders" bought the book "Nature of
Statistical Learning Theory" (rating 5) and the book "The Signal and the Noise"
(rating 3), with an average rating of 4. And the "Francisco Chang" bought the
book "Nature of Statistical Learning Theory" (rating 4), "Machine Learning for
Hackers" (rating 5), "Superfreakonomics" (rating 3) and "Physics &
Philosophy" (rating 3) with an average rating of 3.75. Thus, applying Pearson's
formula results in a coefficient equal to 1 which means that there is an
absolutely positive linear correlation. This leads to the recommendation of a
book read by "Francisco Chang", which is chosen from the books that "Maria
Anders" did not read and whose rating of "Francisco Chang" is the highest.

MATCH (u1:User {name:"Maria Anders"})-[r:BOUGHT]->(m:Book)

WITH u1, avg(r.rating) AS u1_mean

MATCH (u1)-[r1:BOUGHT]->(m:Book)<-[r2:BOUGHT]-(u2)

WITH u1, u1_mean, u2, COLLECT({r1: r1, r2: r2}) AS ratings MATCH

(u2)-[r:BOUGHT]->(m:Book)

WITH u1, u1_mean, u2, avg(r.rating) AS u2_mean, ratings UNWIND

ratings AS r

WITH sum((r.r1.rating - u1_mean) * (r.r2.rating - u2_mean)) AS

nom,sqrt(sum((r.r1.rating - u1_mean)^2) * sum((r.r2.rating -

u2_mean) ^2)) AS denom, u1, u2 WHERE denom <> 0

WITH u1, u2, nom/denom AS pearson

ORDER BY pearson DESC LIMIT 10

MATCH (u2)-[r:BOUGHT]->(m:Book) WHERE NOT EXISTS((u1)-[:BOUGHT]-

>(m))

RETURN m.title AS recommendation, SUM(pearson * r.rating) AS score

ORDER BY score DESC LIMIT 5

Fig. 9 - Using of the Pearson Correlation algorithm

Fig. 10 – The recommendations obtained by applying the Pearson Correlation algorithm

52

The advantage is that this approach is good to match readers with common
properties such as books borrowed by both with the same rating. Another
advantage is also that we take into account the mean of the ratings for
example. In this way, some users tend to give higher ratings than others so
we have to find the correct pattern.

The disadvantage is the same as for cosine distance.

Conclusions

This article aims to present how to use graphs to suggest book recommendations to

library users. It proposes an approach where the library application uses a graph

saving data structure to attract as many users as possible.

On my opinion, the proposed application could be an important factor in loyalty to

users because they receive accurate, real-time recommendations without the need

for additional resources. Thus, the article has been able to show the benefits of

using different statistical algorithms to find the level of similarity between two

objects and how to implement them in real life to increase the number of hits of the

library application.

One useful extension consists of using a hybrid recommendation system that uses

the algorithms shown above but which also takes into account the latest user-

viewed products as well as the number of times the product was viewed.

References

[1] Sales force, Product Recommendation Engines to Improve Customer

Relationships,

https://www.salesforce.com/solutions/industries/retail/resources/product-

recommendation-engines , (accessed 16 March 2019).

[2] Microsoft, Create a graph database and run some pattern matching queries

using T-SQL, https://docs.microsoft.com/en-us/sql/relational-

databases/graphs/sql-graph-sample?view=sql-server-2017 , (accessed 16 March

2019)..

[3] Valiance Solutions, RECOMMENDER SYSTEMS 101,

https://valiancesolutions.com/recommender-systems-101 , (accessed 16 March

2019).

[4] Wikipedia, Cypher Query Language,

https://en.wikipedia.org/wiki/Cypher_Query_Language , (accessed 16 March

2019).

[5] Jonathan L. Gross, Jay Yellen (2004). Handbook of Graph Theory, CRC Press

[6] Junmei Feng , Xiaoyi Fengs, Ning Zhang, Jinye Peng (2018). An improved

collaborative filtering method based on similarity,

https://doi.org/10.1371/journal.pone.0204003

[7] Guy, N. N. (2017). A Recommender system for rental properties (Thesis).

Strathmore University

53

https://www.salesforce.com/solutions/industries/retail/resources/product-recommendation-engines
https://www.salesforce.com/solutions/industries/retail/resources/product-recommendation-engines
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-sample?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-sample?view=sql-server-2017
https://valiancesolutions.com/recommender-systems-101/
https://en.wikipedia.org/wiki/Cypher_Query_Language
https://en.wikipedia.org/wiki/Cypher_Query_Language
https://doi.org/10.1371/journal.pone.0204003

